生信豆芽菜——配对型的箱线图使用说明

网站: http://www.sxdyc.com/visualsPairBoxplot

一、配对型的箱线图简介:

配对箱线图,常见于配对样本的数据分析中,在日常研究中,我们会碰到配对资料,例如同一病人治疗前后的变化,同一病人癌组织和癌旁组织基因表达,类似于等等都需要配对资料。对于这类数据的展示通常使用配对点图来可视化,这里我们介绍配对箱线散点图的绘制。

二、使用方法

1.打开网址(http://www.sxdyc.com/singleCollectionTool?href-diff),选择"配对型的箱线图"。

est差异分析	edgeR差异分析	dagaga a ta	limma差异分析
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	deseq2差异分析	
用不配对的t.test进行差异分析	使用edgeR包进行差异分析	使用deseq2包差异分析	使用limma包差异分析
山图	山峦图	配对型的箱线图	配对型的复杂箱线图
制火山图	不同分组的山峦图	配对型的箱线图	配对型的云雨图+箱线图+散点+误差棒 +均值连线
线图	箱线图+小提琴图		
制箱线图	箱线图+小提琴图		

2.准备数据:第一列为特征名,第二列和第三列为要比较的两组该特征对应的数值。数据格式用为 txt 文本,以制表符分割。

	Α	В	С	D
1	sample	name1	name2	
2	p1	5.2	8.2	
3	p2	7.6	10.6	
4	p3	6.5	9.5	
5	p4	3.3	6.3	
6	p5	4.5	7.5	
7	p6	5.2	8.2	
8	p7	7.7	10.7	
9	p8	6.6	9.6	
10	p9	8.9	11.9	
11	p10	9	12	
12	p11	4.5	7.5	
13	p12	6.5	9.5	
14	p13	6.6	9.6	
15	p14	5.2	8.2	
16	p15	4.3	7.3	
17	p16	7.5	10.5	
18	p17	7.2	10.2	
19	p18	7.7	10.7	
20	p19	6.6	9.6	
21	p20	4.5	7.5	
22	p21	3.3	6.3	
23	p22	4.5	7.5	
24	p23	4.4	7.4	
25	p24	6.6	9.6	

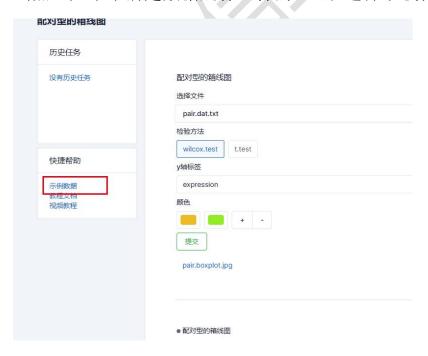
3.选择检验方法:包括 wilcox.test 和 T.tset

配对型的箱线图
选择文件
选择文件
检验方法 wilcox.test t.test
y 如 标签
输入y轴标签
(要色)
pair.boxplot.jpg

4.输入 Y 轴的标签。

- 5.选择两组不同的颜色
- 6.点击提交

配对型的箱线图			
选择文件			
pair.dat.txt			
检验方法 wilcox.test	t.test		
y轴标签			
expression			
提交	• -		
pair.boxplot.jpg			


- 配对型的箱线图
- 7.输入分析队列名,点击提交

100			
	分析队列名		
	请输入分析队列名		
		提交	

8.等待结果, 查看结果

当然,如果不清楚数据是什么样的,可以选择下载我们的示例数据

